Рубрика: Բնագիտություն 6դ

Հաստատուն մագնիսներԼույսի աղբյուրներ,լույսի ուղղագիծ տարածում:Արեգակի և լուսնի խավարումներ:

Հաստատուն մագնիսներ

Մագնիսները, էլեկտրականացած մարմինների նման կարող են փոխազդել։ Դրանք փոխազդում են իրենց շուրջ գոյություն ունեցող մագնիսական դաշտերի միջոցով։ Մի մագնիսի մագնիսական դաշտն ազդում է մյուս մագնիսի վրա։ Եվ հակառակը՝ երկրորդ մագնիսի մագնիսական դաշտն էլ ազդում է առաջին մագնիսի վրա։Երկաթը, կոբալտը, թուջը, պողպատը և մի քանի այլ համաձուլվածքներ մագնիսական երկաթաքարի ազդեցությամբ ձեռք են բերում մագնիսական հատկություններ և երկար ժամանակ պահպանում այն։ 
Այն մարմինները, որոնք երկար ժամանակ պահպանում են իրենց մագնիսական հատկությունները, կոչվում են հաստատուն մագնիսներ կամ պարզապես մագնիսներ:
Մագնիսի այն մասերը, որտեղ մագնիսական ազդեցությունն առավել ուժեղ է, անվանում են մագնիսական բևեռներ։ Մագնիսներն ունեն երկու բևեռ՝ հյուսիսային և հարավային։Երկու մագնիսների տարանուն բևեռները ձգում են իրար, իսկ նույնանուն բևեռները՝ վանվում իրարից։Ընդունված է հյուսիսային բևեռը ներկել կապույտ գույնով և նշանակել N տառով, հարավայինը՝ կարմիր և նշանակել S տառով։

Կողմնացույց

Երկիրն օժտված է մագնիսական հատկություններով: Նա կարող է դիտվել որպես մի հսկայական մագնիս:Երկրի աշխարհագրական և մագնիսական բևեռները հակառակ են դասավորված։
Երկրի հյուսիսային աշխարհագրական բևեռի մոտ տեղակայված է  հարավային  մագնիսական բևեռը, իսկ հարավային աշխարհագրական բևեռի մոտ՝  հյուսիսային  մագնիսական բևեռը։

Կողմնացույցի մագնիսական սլաքը փոքր, հաստատուն մագնիս է, որը կողմնացույցի հիմնական մասն է։

Տեղանքում կողմնորոշվելու համար է օգտագործվում կողմնացույցը։  Կողմնացույցի աշխատանքը պայմանավորված է նրանով, որ Երկիրը նույնպես մագնիս է՝ իր մագնիսական բևեռներով և մագնիսական դաշտով։ Կողմնացույցի սլաքի հյուսիսային բևեռը ձգվում է Երկրի մագնիսական հարավային բևեռի կողմից՝ որպես տարանուն բևեռներ և ուղղվում դեպի այն։ Նույն պատճառով կողմնացույցի սլաքի հարավային բևեռը ուղղվում է Երկրի մագնիսական հյուսիսային բևեռի կողմը։
Ուժեղ տաքացման ժամանակ մագնիսները կորցնում են իրենց մագնիսական հատկությունները։ Այս երևույթը կոչվում է ապամագնիսացում:
Մագնիսների օգտագործման բնագավառը բավականին լայն է։ Մագնիսներ կան մանկական խաղալիքներում, հեռախոսներում, բարձրախոսներում։ Դրանք կիրառվում են տեխնիկայի շատ բնագավառներում, բժշկության մեջ, կենցաղում։

Լույսի աղբյուրներ,լույսի ուղղագիծ տարածում:Արեգակի և լուսնի խավարումներ:

Բազմաթիվ դիտումներով և փորձերով հաստատվել է, որ թափանցիկ համասեռ միջավայրում լույսը տարածվում է ուղղագիծ։
Օրինակ
Եթե լույսի աղբյուրի և մեր աչքի միջև տեղադրենք անթափանց մարմին, ապա լույսի աղբյուրը մենք չենք տեսնի, քանի որ լույսի ուղղագիծ տարածման հետևանքով ճառագայթը չի կարողանա շրջանցել խոչընդոտը:
Լույսի ուղղագիծ տարածմամբ են բացատրվում ստվերների առաջացումըԱրեգակի, Լուսնի խավարումները և այլ երևույթներ:

Ստվերի առաջացումը

Լույսի ուղղագիծ տարածմամբ է բացատրվում ստվերի առաջացումը: Նկարներում պատկերված են անթափանց մարմիններ՝ գունդ և սափոր:
Փոքր չափեր ունեցող լույսի S աղբյուրով լուսավորելիս Bէկրանին առաջանում է ստվեր: Եթե լույսը ուղղագիծ չտարածվեր, ապա կշրջանցեր գունդը կամ սափորը և կլուսավորեր դրա հետևում գտնվող էկրանի ողջ տիրույթը:
Լույսի ուղղագիծ տարածումն օգտագործում են տեղանքում կամ ստորգետնյա ուղիղ ճանապարհներ նախագծելու, ուղիղ գծով սյուներ տեղակայելու համար:
Սյուները տեղադրում են այնպես, որ բացի մոտակա սյունից` մնացածը չերևան:

Արեգակի և Լուսնի խավարումները 

Լուսինը լույսի աղբյուր չէ, այն սեփական լույսից զուրկ անթափանց մարմին է, սակայն տեսանելի է, քանի որ անդրադարձնում է Արեգակից իր վրա ընկնող ճառագայթները։
Երբ Լուսինը հայտնվում է Արեգակի և Երկրի միջև, լրիվ կամ մասնակի չափով ծածկում է Արեգակի տեսանելի սկավառակը, Լուսնի կոնաձև ստվերն ընկնում է Երկրի վրա և տեղի է ունենում Արեգակի խավարում։
Երկրի մակերևույթի՝ լրիվ ստվերի սահմաններում հայտնված մասերից, դիտվում է Արեգակի լրիվ խավարում, իսկ ոչ լրիվ ստվերում գտնվող տեղերից դիտվում է Արեգակի մասնակի խավարումը։ 
Արեգակի խավարում դիտվում է, երբ Լուսինը հայտնվում է Արեգակի և Երկրի միջև:

Լուսնի խավարումը դիտվում է, երբ Երկիրը հայտնվում է Արեգակի և Լուսնի միջև:

Այդ դեպքում Լուսինը գտնվում է Երկրի կողմից առաջացած ստվերի տիրույթում:
Արեգակի և Լուսնի խավարումները գիտնականները կարողանում են մեծ ճշգրտությամբ կանխատեսել կատարվելուց շատ տարիներ առաջ:

Լրացուցիչ աշխատանք

Պատասխանել հարցերին

Рубрика: Բնագիտություն 6դ

Էլեկտրական հոսանք,Կայծակ

Էլեկտրական հոսանք

Էլեկտրական լիցքերը կարող են տեղաշարժվել, հաղորդվել, առաջացնելով  էլեկտրական հոսանք: Ըստ իրենց լիցք հաղորդելու հատկության, նյութերը բաժանվում են հաղորդիչների և մեկուսիչների:
Էլեկտրականության հաղորդիչներ են. մետաղները, գրաֆիտը, մարդու և կենդանիների մարմինները, խոնավ հողը և այլն։
Ոչ հաղորդիչներ կամ մեկուսիչներ են. ապակին, չոր փայտը, ռետինը, մարմարը և այլն։

Հաղորդիչներով լիցքավորված մասնիկների ուղղորդված շարժումը, որի արդյունքում տեղի է ունենում լիցքի տեղափոխություն, կոչվում է էլեկտրական հոսանք:
Էլեկտրական հոսանքի շնորհիվ են լուսավորվում քաղաքներն ու գյուղերը, ջեռուցվում բնակարանները: Էլեկտրական հոսանքով են աշխատում բազմաթիվ կենցաղային սարքեր:

Էլեկտրական հոսանքի առաջացման համար անհրաժեշտ են հոսանքի աղբյուրներ և հաղորդալարեր, որոնց միջոցով էլեկտրական հոսանքն էլեկտրակայաններից մեր բնակարաններ կհասնի:
Որոշ կենցաղային սարքերի, օրինակ` ձեռքի լուսարձակի, հեռակառավարման վահանակի, հաշվիչի աշխատանքի համար օգտագործում են  գալվանական տարրեր, ավտոմեքենաներում` կուտակիչներ:
Էլեկտրակայանները, գալվանական տարրերը, կուտակիչները կոչվում են հոսանքի աղբյուրներ:

Հոսանքի աղբյուրներն ունեն երկու բևեռդրական «+» և բացասական «–»: Հոսանքի աղբյուրը սարքին պետք է միացնել այնպես, որ աղբյուրի «+» բևեռը համընկնի սարքի «+» բևեռին, իսկ աղբյուրի «–» բևեռը սարքի «–» բևեռին:

Էլեկտրական սարքը աշխատեցնելու համար այն հաղորդալարերով միացնում են հոսանքի աղբյուրին՝ կազմելով էլեկտրական շղթա:

Օրինակ

Շարժանկարում պատկերված է պարզագույն էլեկտրական շղթան՝ կազմված հոսանքի աղբյուրից, լամպից, անջատիչից և դրանք իրար միացնող հաղորդալարերից:

Երբ շղթան փակ է, դրանով հոսանք է անցնում, երբ բաց է՝ ոչ:

Լրացուցիչ աշխատանք

Պատասխանել հարցերին

  1. Ի՞նչ է էլեկտրական հոսանք:

Էլեկտրական հոսանքի առաջացման համար անհրաժեշտ են հոսանքի աղբյուրներ և հաղորդալարեր, որոնց միջոցով էլեկտրական հոսանքն էլեկտրակայաններից մեր բնակարաններ կհասնի:

  1. Ո՞ր նյութերն են էլեկտրականության հաղորդիչները:

Հաղորդիչներով լիցքավորված մասնիկների ուղղորդված շարժումը, որի արդյունքում տեղի է ունենում լիցքի տեղափոխություն, կոչվում է էլեկտրական հոսանք:

Կայծակ

Երբ երկու լիցքավորված մարմիններ բավականաչափ մոտեցնում են իրար, դրանց միջև առաջանում է կայծ և լսվում է ճայթյուն: Այս երևույթն անվանում են էլեկտրական պարպում:

Կայծակը էլեկտրական պարպում է, որը տեղի է ունենում մթնոլորտում և ուղեկցվում է որոտով:
Կայծակ կարող է առաջանալ երկու էլեկտրականացված ամպերի կամ ամպի ու Երկրի միջև:

Ամպրոպային ամպերը կազմված են ջրի կաթիլներից և փոքրիկ սառցակտորներից: Ներքևից բարձրացող տաք օդի հոսանքների շնորհիվ այդ մասնիկներն անընդհատ բախվում են իրար և, որպես արդյունք` լիցքավորվում: Երբ լիցքերի քանակությունը բավականաչափ մեծանում է, ամպից որոշ էլեկտրոններ օդով հասնում են Երկիր՝ ստեղծելով անցուղի մնացած լիցքավորված մասնիկների համար․ առաջանում է կայծակ։ 

Այդ պրոցեսը տևում է շատ կարճ, ջերմաստիճանը հասնում է տաս հազար աստիճանի, տեղի է ունենում կարճատև լուսարձակում։
Օդի արագ ընդարձակման հետևանքով առաջանում է նաև հարվածային ալիք, և մենք լսում ենք որոտը: Կայծակն օժտված է ահռելի էներգիայով և կարող է շատ վտանգավոր լինել: Խփելով տարբեր մարմինների՝ կայծակը կարող է մեծ վնասներ պատճառել. հալել մետաղե իրերը, այրել ծառերը, սպանել մարդկանց և կենդանիներին:

Ինչպես պաշտպանվել կայծակից

Կայծակը բնության ահեղ երևույթներից է, և նրա հարվածը խիստ վտանգավոր է։ Այն ավելի հաճախ հարվածում է Երկրի մակերևույթից վեր խոյացող առարկաներին, շինություններին, ծառերին, կենդանիներին և մարդկանց։
Շենքերը կայծակի հարվածից պաշտպանում են հատուկ սարքերի՝  շանթարգելների  օգնությամբ:
Շանթարգելը մետաղյա ձող է, որն ամրացվում է շինության պատի երկայնքով։ Ձողի վերին սրածայր մասը  պաշտպանվող շենքից բարձր է՝ ստորին մասը հողակցված։Ամպրոպաբեր ամպերից էլեկտրական լիցքերը շանթարգելի միջով անցնում են հողի մեջ՝ չվնասելով շինությունը:

Կայծակից պաշտպանվելու համար անհրաժեշտ անվտանգության կանոնները.

1. Կայծակի ժամանակ բաց դաշտում գտնվելը վտանգավոր է:
2. Չի կարելի  պառկել գետնին:
3. Եթե հնարավոր չէ արագ հեռանալ, ապա պետք է կքանստել համեմատաբար ցածրադիր տեղում:
4. Քանի որ կայծակը խփում է առավել բարձր մարմիններին, ուստի չպետք է թաքնվել բարձր ծառի տակ:
5. Որքան հնարավոր է` պետք է շուտ դուրս գալ ջրից:
6. Չի կարելի ձեռք տալ մետաղե առարկաներին, պետք է հեռու մնալ դրանցից:
7. Թաքնվել կարելի է խիտ անտառում, քարանձավներում, բնակելի շենքում, ավտոմեքենայում՝ փակելով պատուհանները:
8. Մոտոցիկլետի կամ հեծանվի օգտագործումը վտանգավոր է:

Լրացուցիչ աշխատանք

Պատասխանել հարցերին

  1. Ի՞նպես է առաջանում կայծակը:Ի՞նչ է որոտը:

Կայծակը էլեկտրական պարպում է, որը տեղի է ունենում մթնոլորտում և ուղեկցվում է որոտով:

  1. Ի՞նչ է շանթարգելը, և ինպե՞ս է այն շինությունները պաշտպանում կայծակի հարվածից:

Շանթարգելը մետաղյա ձող է, որն ամրացվում է շինության պատի երկայնքով։ Ձողի վերին սրածայր մասը  պաշտպանվող շենքից բարձր է՝ ստորին մասը հողակցված։

  1. Կայծակի ժամանակ ինչպե՞ս պետք է վարվեք,եթե հայտվել եք բաց տարածքում:

Եթե հնարավոր չէ արագ հեռանալ, ապա պետք է կքանստել համեմատաբար ցածրադիր տեղում:

Рубрика: Բնագիտություն 6դ

Ամփոփիչ աշխատանք

  1. Ի՞նչ է բնութագրում ջերմաստիճանը:

այն բնութագրում է այս կամ այն մարմինի ջերմաստիճանը

2. Ե՞րբ են մարմինները ջերմային հավասարակշռության վիճակում:

Այն ժամանակ երբ որ, սառը և տաք մարմինը իրար հետ հանդիպում են։

3. Ջերմաչափի ի՞նչ տեսակներ գիտես:

էլեկտրական, արևաին և հեղուկային:

4. Ինչպե՞ս պետք է օգտվել բժշկական ջերմաչափից:

հանգիստ,որովհետև եթե այն ջարդել նրա մեջի սնդիկը կարող է մեզ վարաքել։

5. Ո՞ր երևույթներն են կոչվում հալում և պնդացում:

Հալումը կատարվում է այն ժամանակ երբ որ օրինակ ջերմաստիճանը բարձր է և ձյունը հալվում է և դառնում ջուր

իսկ պնդացումը դա երբ որ ջուրը տանում կամել դնում ենք սառը տեղ և այն դառձվում է սառուց

6. Ո՞ր մեծություն է կեչվում եռման ջերմաստիճան:

Եռման ջերմաստիճյան կոչում էն այն առարկաին/հեղուկին, որն 100C ջերմաստճանից տաք են:

7. Էներգիայի ի՞նչ տեսակներ են ձեզ հայտնի:

ճառագայթային,էլեկտրական,միջուկային,քիմիական։

8. Ի՞նչպես են կենդաները և բույսերը ստանում օրգանական նյութեր:

Նրանք այն ստանում են արեգակի շողերից։

9. Ո՞ր էներգիան է կոչվում ճառագայթային:

դա արեգակի ճառագայթներից էներգիան է։

10. Էլեկտրական էներգիայի ի՞նչ փոխակերպումներ են ձեզ հայտնի:

արևի պանելներից,ջրային մեխանիկական անվերջ շարժիչ,օդային մեխանիկական հովհարիչ։

11. Ի՞նչ գիտեք ատոմային <միջուկային>էներգիայի մասին:

այն ստանում են ատոմային էլեկտրակայաններից,որոնք շատ

12. Ի՞նչ էներգիա է անհրաժեշտ կենդանի օրգանիզմներին:

ճառագայթային,որովհետև այն ունի իր մեջ բոլոր մարդկանց համար պետքական էներգիան նաև նա տաքացնում է մեր մոլորակը։

Рубрика: Բնագիտություն 6դ

Մարմինների էլեկտրականացում

Եթե շփելիս մարմինը ձեռք է բերում այլ առարկաները ձգելու հատկություն, ապա ասում են, որ մարմինն էլեկտրականացել է կամ ձեռք է բերել լիցք:

Լիցքավորված մարմինների փոխազդեցությունն անվանում են էլեկտրական փոխազդեցություն:
Եթե լիցքավորված ձողը մոտեցնեք ջրի բարակ շիթին, կարող ենք համոզվել, որ լիցքավորված մարմինը ձգում է նաև նրան։
Սաթը հույներն անվանում էին «էլեկտրոն»: Այստեղից էլ առաջացել է էլեկտրականություն բառը:
Լիցքավորված մարմինները կարող են ոչ միայն ձգել, այլ նաև`վանել միմյանց:
Ընդունված է մետաքսով շփելիս ապակու վրա առաջացած լիցքն անվանել դրական (+), բրդով շփելիս էբոնիտի վրա առաջացած լիցքը` բացասական (–):

Այսպիսով՝բնության մեջ գոյություն ունեն երկու տեսակի լիցքեր: 
Միևնույն նշանի լիցք ունեցող մարմիններն իրար վանում են, տարբեր նշանի լիցքեր ունեցող մարմինները` ձգում:
Շփելիս երկու մարմինն էլ էլեկտրականանում են. մի մարմինը ձեռք է բերում դրական լիցք, իսկ մյուսը` բացասական:
Ինչպես են լիցքավորվում մարմինները:
Հայտնի է, որ բոլոր նյութերի ատոմները կազմված են պրոտոններից, նեյտրոններից և էլեկտրոններից: Էլեկտրոնի լիցքը համարում են բացասական, իսկ պրոտոնինը` դրական: Սովորական վիճակում ատոմի ընդհանուր լիցքը զրո է, քանի որ պրոտոնների և էլեկտրոնների թիվը իրար հավասար է: Մարմինների շփման ընթացքում էլեկտրոնների մի մասը մի մարմնից անցնում է մյուսին: Մարմինը, որին անցել են լրացուցիչ էլեկտրոններ, լիցքավորվում է բացասական լիցքով, իսկ էլեկտրոններ կորցրած մարմինը` դրական լիցքով:

Մարմինների էլեկտրականացված լինելը պարզում են էլեկտրացույցի միջոցով:

Реклама

Էլեկտրացույցը ունի պարզ կառուցվածք. այն կազմված է մետաղե ձողից և նրան փակցված մետաղե թերթիկներից։ Երբ էլեկտրականացած մարմինը հպում են ձողին, լիցքերը ձողով հաղորդվում են թերթիկներին, որոնք, նույնանուն լիցքերով լիցքավորվելով, վանվում և հեռանում են  միմյանցից:

Դասարանական աշխատանք

Պատասխանել հարցերին

Ե՞րբ են մարմինները համարվում էլեկտրականացված:

Եթե շփելիս մարմինը ձեռք է բերում այլ առարկաները ձգելու հատկություն, ապա ասում են, որ մարմինն էլեկտրականացել է կամ ձեռք է բերել լիցք:

Ո՞ր էլեկտրական լիցքերն են անվանում դրական , և որո՞նք ՝ բացասական :

պրոտոններ-դրական նեյտրոններ-բացասական

    Рубрика: Բնագիտություն 6դ

    Ջերմային էներգիայի աղբյուրները

    Երկրի վրա ջերմային էներգիայի գլխավոր աղբյուրն Արեգակն է: Արեգակի էներգիան Երկրի վրա ապահովում է կյանքի համար անհրաժեշտ ջերմաստիճանը, ինչպես նաև, լուսասինթեզի միջոցով՝ բույսերում օրգանական նյութերի ստեղծումը:
    Ջերմային էներգիայի աղբյուրներ են նաև վառելանյութերը, ինչպիսիք են փայտը, տորֆը, քարածուխը, նավթը, բենզինը, մազութը, բնական գազը: Ջերմային էներգիայի այս աղբյուրներն առաջացել են հազարամյակների ընթացքում՝ բույսերի, կենդանի օրգանիզմների և նրանց արգասիքների քայքայումից: Դրանց պաշարները գտնվում են Երկրի ընդերքում և սահմանափակ են:

    images.jpg

    Այրման ընթացքում վառելանյութում պարունակվող ածխածնի ատոմները միանում են օդում գտնվող թթվածնի ատոմներին, ինչի հետևանքով առաջանում է ածխաթթու գազ: Այդ ռեակցիան ուղեկցվում է ջերմության անջատմամբ:

    7a96a20063d20d95a86d039e9232e706_XL.jpg

    Միևնույն զանգվածով տարբեր վառելանյութեր այրելիս տարբեր քանակությամբ ջերմություն է անջատվում: Վառելանյութի ջերմային հատկությունները բնութագրվում են վառելիքի այրման տեսակարար ջերմությամբ
    Այն ֆիզիկական մեծությունը, որը ցույց է տալիս, թե որքան ջերմություն է անջատվում 1 կգ վառելանյութի լրիվ այրումից, անվանում են վառելիքի այրման տեսակարար ջերմություն:
    Եթե հայտնի է տվյալ վառելանյութի այրման տեսակարար ջերմությունը և նրա զանգվածը, ապա կարող ենք որոշել այդ վառելիքի լրիվ այրումից անջատված ջերմության քանակը, եթե այդ երկու մեծությունները բազմապատկենք իրարով:
    Աղյուսակում ներկայացված են մի քանի նյութի այրման տեսակարար ջերմությունները՝ արտահայտված ՄՋ/կգ-ով: 1ՄՋ-ն (մեգաջոուլը) հավասար է 1000000Ջ-ի:

    Screenshot_1.png

    Քարածխի, նավթի, բնական գազի հանքերի շահագործումը էական ազդեցություն է ունենում շրջակա միջավայրի վրա: Այդ նյութերի այրման հետևանքով մթնոլորտն աղտոտվում է: Թունավոր գազերը, մոխիրը, մուրը, անցնելով մթնոլորտ, աղտոտում են այն և վտանգ հանդիսանում կենդանի օրգանիզմների համար: Այս վառելանյութերից բնապահպանական առումով համեմատաբար մաքուր է բնական գազը:

    Անցյալ դարի կեսերից օգտագործվում է նաև միջուկային վառելիքը։

    photo_105714.jpg

    Ջերմային էներգիայի հզոր աղբյուրներ կան նաև Երկրի խորքերում: Դրանք տաք աղբյուրներն են ու գեյզերները:

    eruzione-geyser-iloveimg-cropped.gif

    Վառելանյութի պաշարները սահմանափակ են, այդ պատճառով անհրաժեշտ է խնայողաբար օգտագործել վառելանյութերը և միաժամանակ մտածել էներգիայի այլընտրանքային աղբյուրների օգտագործման մասին, ինչպիսիք են՝ թափվող ջրի էներգիանքամու էներգիանԱրեգակի էներգիան և այլն:

    solar-energy.jpg

    Դասարանական աշխատանք

    Պատասխանել հարցերին

    1. Ո՞րն է Երկրի վրա ջերմային էներգիայի գլխավոր աղբյուրը.

    Արևը

    1. Ի՞նչ վառելանյութեր են ձեզ հայտնի: 

     փայտը, տորֆը, քարածուխը, նավթը, բենզինը, մազութը, բնական գազը:

    Рубрика: Բնագիտություն 6դ

    Ջերմային երևույթների բազմազանությունը

    Տաքացնելիս կամ սառեցնելիս մարմինների հետ տեղի են ունենում որոշ փոփոխություններ. մարմինները մի վիճակից անցնում են մեկ այլ վիճակի, սեղմվում են կամ ընդարձակվում: Այս փոփոխություններն ընդունված է անվանել ջերմային երևույթներ:
    Օրինակ
    Ջերմային երևույթներ են՝ հալումն ու պնդացումը, գոլորշացումն ու խտացումը, եռումը, ջերմային ընդարձակումը:
    Հալում և պնդացում
    Նյութի անցումը պինդ վիճակից հեղուկ վիճակի կոչվում է հալում:
     Հալման հակառակ երևույթը, երբ նյութը հեղուկ վիճակից անցնում է պինդ վիճակի, կոչվում է պնդացում:
    Որպեսզի նյութը հալվի, անհրաժեշտ է այդ նյութը տաքացնել մինչև որոշակի ջերմաստիճան: Բյուրեղային նյութերի համար այն խիստ որոշակի ջերմաստիճան է:
     Այն ջերմաստիճանը, որի դեպքում նյութը սկսում է հալվել, կոչվում է հալման ջերմաստիճան:

    Օրինակ

    Մի շարք նյութերի հալման ջերմաստիճանը (°C)

    սնդիկ-39արծաթ962երկաթ1539
    սառույց0ոսկի1064պլատին1772
    անագ232պղինձ1085վոլֆրամ3387
    կապար327չուգուն1200ցինկ420
    ալյումին660պողպատ1500

    Հալման ջերմաստիճանում նյութը կարող է գտնվել և՛ պինդ, և՛ հեղուկ վիճակում:

    0°C-ում ջուրը կարող է գտնվել և՛ պինդ, և՛ հեղուկ վիճակներում: Այդ ջերմաստիճանում սառույցը հալելու համար պետք է նրան էներգիա հաղորդել, իսկ ջուրը պնդացնելու համար՝ նրանից էներգիա վերցնել:

    Հալման ընթացքում նյութի ջերմաստիճանը չի փոխվում:

    Որոշ նյութեր, օրինակ՝ մոմը, ապակին, ձյութը, շոկոլադը չունեն հալման որոշակի ջերմաստիճան:
    Այն նյութերը,որոնց անցումը մի վիճակից մյուս վիճակին տեղի է ունենում ոչ թե որոշակի ջերմաստիճանում, այլ՝ աստիճանաբար, անվանում են ամորֆ նյութեր:
    Հալման և պնդացման երևույթները, դեռ հին ժամանակներից, մարդիկ օգտագործում են մետաղից տարբեր գործիքներ պատրաստելիս: Այդ նպատակով մետաղը հալում ու լցնում են նախապես պատրաստված կաղապարների մեջ և սառելուց հետո հանում կաղապարից:

     Նյութի անցումը հեղուկ վիճակից գազային վիճակի կոչվում է գոլորշացում: Հակառակ երևույթը, երբ նյութը գազային վիճակից անցնում է հեղուկ վիճակի, կոչվում է խտացում:

    Հեղուկի գոլորշացումը տեղի է ունենում ցանկացած ջերմաստիճանում, սակայն որքան բարձր է ջերմաստիճանը, այնքան արագ է տեղի ունենում գոլորշացումը: Գոլորշացման արագությունը կախված է նաև հեղուկի տեսակից: Օրինակ` եթերը, սպիրտը միևնույն ջերմաստիճանում ավելի արագ են գոլորշանում, քան ջուրը:Երբ դրսում ցուրտ է, խոնավ բնակարանում ապակիները «քրտնում» են, դրանց վրա ջրի փոքրիկ կաթիլներ են հայտնվում:

    Նմանապես ցուրտ և խոնավ գիշերներին դրսում խոտի վրա ցող է առաջանում: Նշված դեպքերում ջրային գոլորշին փոխակերպվում է ջրի, այսինքն՝ տեղի է ունենում խտացում:

    Գոլորշացմամբ և խտացմամբ են պայմանավորված տեղումները (տե՛ս շարժանկար): Երկրի մակերևույթին գտնվող ջուրը գոլորշանալով սկսում է վեր բարձրանալ: Վերևում, որտեղ ջերմաստիճանը ցածր է, գոլորշին խտանում է և անձրևի տեսքով թափվում ներքև:

    Գոլորշանում են նաև պինդ մարմինները, օրինակ՝ սառույցը։ Դրա հետևանքով դրսում կախված սպիտակեղենը չորանում է նաև ձմռան սառնամանիքին։ Հնարավոր է նաև հակառակը՝ գոլորշին անցնում է պինդ վիճակի: Օրինակ՝ եղյամի առաջացումը Գոլորշացման յուրահատուկ տեսակ է եռումը:
    Հետևելով եռման պրոցեսին` կարելի է նկատել, թե անոթի հատակին ինչպես են առաջանում և, աստիճանաբար մեծանալով, վեր բարձրանում պղպջակներ (տե՛ս շարժանկար): Դրանք պարունակում են ջրում լուծված օդ և առաջացած ջրային գոլորշի: Յուրաքանչյուր հեղուկ եռում է խիստ որոշակի ջերմաստիճանում:

    Այն ջերմաստիճանը, որի դեպքում հեղուկը եռում է, կոչվում է եռման ջերմաստիճան: Այն կախված է մթնոլորտային ճնշումից:
    Նորմալ մթնոլորտային ճնշման դեպքում ջուրը եռում է 100°C ջերմաստիճանում: Եռման ողջ ընթացքում հեղուկի ջերմաստիճանը չի բարձրանում, չնայած մենք իրեն անընդհատ ջերմություն ենք հաղորդում: Հաղորդված ջերմությունը ծախսվում է ամբողջ ծավալից հեղուկի գոլորշացման համար:

    Դասարանական աշխատանք.

    Պատասխանել հարցերին

    1. Ի՞նչ ջերմային երևույթներ գիտեք:

    հալումն ու պնդացումը, գոլորշացումն ու խտացումը, եռումը, ջերմային ընդարձակումը:

    1. Ո՞ր երևույթներն են կոչվում հալում և պնդացում:

    Նյութի անցումը պինդ վիճակից հեղուկ վիճակի կոչվում է հալում:
     Հալման հակառակ երևույթը, երբ նյութը հեղուկ վիճակից անցնում է պինդ վիճակի, կոչվում է պնդացում:

    1. Ո՞ր մեծությունն է կոչվում եռման ջերմաստիճան :

    Այն ջերմաստիճանը, որի դեպքում հեղուկը եռում է, կոչվում է եռման ջերմաստիճան: Այն կախված է մթնոլորտային ճնշումից:

    1. Ո՞ր եչրույթներն են կոչվում գոլորշացում և խտացում:

    Նյութի անցումը հեղուկ վիճակից գազային վիճակի կոչվում է գոլորշացում: Հակառակ երևույթը, երբ նյութը գազային վիճակից անցնում է հեղուկ վիճակի, կոչվում է խտացում:

    Рубрика: Բնագիտություն 6դ

    Ջերմային հավասարակշռություն և ջերմաստիճան.հունվարի 28-փետրվարի 2

    Ջերմաստիճան
    Առօրյա կյանքում տարբեր մարմինների ջերմային վիճակը բնութագրելու համար մենք օգտվում ենք տաք, սառը հասկացություններից: Մեր զգայարանների օգնությամբ մենք կարողանում ենք տաք մարմինը տարբերել սառը մարմնից, սակայն տաքացվածության աստիճանն այս դեպքում հստակ չի որոշվում:
    Ջերմաստիճանը մարմինների տաքացվածության աստիճանը քանակապես բնութագրող ֆիզիկական մեծություն է:
    Մարմնի ջերմաստիճանը չափում են ջերմաչափով: Կենցաղում լայն տարածում ունեն սնդիկով կամ սպիրտով աշխատող ջերմաչափները:
    Դրանց աշխատանքի հիմքում ընկած է տաքացնելիս հեղուկի ընդարձակման երևույթը: Հեղուկային ջերմաչափը կազմված է հեղուկի պահեստարանից, բարակ խողովակից և սանդղակից:
    Ջերմաչափները լինում են հեղուկային, մետաղական, էլեկտրական և այլն:
    Ջերմաստիճանը որոշելու համար օգտվում են ջերմաստիճանային տարբեր սանդղակներից՝ Ցելսիուսի և Ֆարենհայտի սանդղակներից:
    Ցելսիուսի սանդղակով 0°C ջերմաստիճանը համապատասխանում է հալվող սառցի ջերմաստիճանին, իսկ 100°C-ը՝ նորմալ մթնոլորտային ճնշման դեպքում ջրի եռման ջերմաստիճանին:
    Բացի Ցելսիուսի և Ֆարենհայտի սանդղակներից կիրառվում են նաև Կելվինի և Ռեոմյուրի սանդղակները:Միջավայրի ջերմաստիճանը չափելու համար ջերմաչափը տեղադրում են այդ միջավայրում և սպասում այնքան, մինչև ջերմաչափի ցուցմունքը դադարի փոխվել: Այդ դեպքում, ջերմաչափը և միջավայրը միմյանց հետ ջերմային հավասարակշռության մեջ կլինեն և ջերմաչափի ցուցմունքը միջավայրի ջերմաստիճանը կլինի։ Հետևաբար.
    Ջերմաստիճանը մարմնի ջերմային հավասարակշիռ վիճակը բնութագրող ֆիզիկական մեծություն է:
    Օրինակ
    Մարդու մարմնի ջերմաստիճանը չափում են բժշկական ջերմաչափով: Ի տարբերություն սովորական ջերմաչափի` բժշկական ջերմաչափի խողովակի ստորին մասը նեղացված է, ինչի հետևանքով չափումից հետո ավելի ցածր ջերմաստիճան ունեցող միջավայր տեղափոխելիս ջերմաչափի ցուցմունքը չի փոխվում: Սնդիկի սյունը սկզբնական վիճակին վերադարձնելու համար անհրաժեշտ է ջերմաչափը թափահարել: Հայտնի է, որ ցանկացած ջերմաստիճանում նյութը կազմված է միատեսակ մոլեկուլներից, որոնք կատարում են անկանոն շարժում: Ջերմաստիճանը բարձրացնելիս մոլեկուլներն սկսում են ավելի արագ շարժվել, դրանց միջին կինետիկ էներգիան մեծանում է: Այսպիսով.
    Ջերմաստիճանը մարմինը կազմող մոլեկուլների անկանոն շարժման կինետիկ էներգիայի չափն է:
    Մարմինների ջերմաստիճանը կարող է փոփոխվել լայն սահմաններում: Բնության մեջ հանդիպող ամենացածր ջերմաստիճանը –273°C-ն է. այդ ջերմաստիճանում նյութը կազմող մոլեկուլները դադարում են շարժվելուց:

    1. Հեղուկ ազոտի ջերմաստիճանը –200°C է:
    2. Արեգակի մակերևույթին ջերմաստիճանը +6000°C է:
    3. Տաքարյուն կենդանիներից ամենաբարձր ջերմաստիճանն ունեն թռչունները՝ 40–41°C:
    4. Մարդու բնականոն ջերմաստիճանը մոտ 36,6°C է, իսկ 42°C -ի դեպքում նա կարող է կորցնել գիտակցությունը: Տաք վառարանի մասին ասում են,որ այն ունի բարձր ջերմաստիճան,իսկ սառույցի կտորի մասին` որ այն ունի ցածր ջերմաստիճան։Եթե տաքն ու սառը մարմինները հպվում են,ապա որոշ ժամանակ անց նրանց ջերմաստիճանները հավասարվում են։Այս դեպքում ասում են ,որ նրանք միմյանց հետ ջերմային հավասարակշռության վիճակում են։

    Դասարանական աշխատանք.

    Պատասխանել հարցերին

    Ի՞նչ է բնութագրում ջերմաստիճանը։

    Ֆիզիկական մեծություն:

    Ե՞րբ են մարմինները ջերմային հավասարակշռության վիճակում։

    Միջավայրի ջերմաստիճանը չափելու համար ջերմաչափը տեղադրում են այդ միջավայրում և սպասում այնքան, մինչև ջերմաչափի ցուցմունքը դադարի փոխվել: Այդ դեպքում, ջերմաչափը և միջավայրը միմյանց հետ ջերմային հավասարակշռության մեջ կլինեն և ջերմաչափի ցուցմունքը միջավայրի ջերմաստիճանը կլինի։

    Ջերմաչափների ի՞նչ տեսակներ գիտեք։

    Մեխանիկական,օպտիկական,հեղուկային,էլեկտրոնային,գազային։

    Ի՞նչպես պետք է օգտվել բժշկական ջերմաչափից։

    Մարդու մարմնի ջերմաստիճանը չափում են բժշկական ջերմաչափով: Ի տարբերություն սովորական ջերմաչափի` բժշկական ջերմաչափի խողովակի ստորին մասը նեղացված է, ինչի հետևանքով չափումից հետո ավելի ցածր ջերմաստիճան ունեցող միջավայր տեղափոխելիս ջերմաչափի ցուցմունքը չի փոխվում: Սնդիկի սյունը սկզբնական վիճակին վերադարձնելու համար անհրաժեշտ է ջերմաչափը թափահարել:

    Рубрика: Բնագիտություն 6դ

    Ամփոփիչ աշխատանք

    1. Ո՞ր ուժն է կոչվում առանձգականության ուժ:

    Դեֆորմացիան, որի դեպքում արտաքին ազդեցությունը վերացնելուց հետո մարմինը վերականգնում է իր ձևն ու չափերը, կոչվում է առաձգական ուժ

    1. Ե՞րբ են առաջանում մարմինների ձևափոխություն:

    Այն ժամանակ երբ այլ մարմինը օրինակ փուչիկ է տրաքեցնում, տեղի է ունենում ձևափոոխություն

    1. Ուժի չափման միավորը ի՞նչպես է կոչվում:

    Նյուտոն

    1. Ի՞նչ տառով են նշանակում ուժը:

    F

    1. Ո՞ր դեպքում է կատարվում մեխանիկական աշխատանք:

    Առաջին տարբերակով մենք կարող ենք ուժ օգտագործելով ստեղծենք մեխանիկական շարժում, օրինակ ավտոմեքենայով և այլն։Իսկ երկրորդ տարբերակը, կան ռոբոտներ որոնք ծրագրած են այդպես և կարող են մեն մենակ մեխանիկական շարժում։

    1. Ինչի՞ց է կախված մեխանիկական աշխատանքի մեծությունը: ֊

    Կամ ձևակերպած ուժից։

    1. Էներգիայի ի՞նչ տեսակներ են ձեզ հայտնի:

    Էլեկտրական, ձառագայթային, միջուկային, ջերմային և վերջապես քիմիական։

    1. Ի՞նչպես են կենդաները և բույսերը ստանում օրգանական նյութեր:

    Արեգակի ճառագայթներից։

    1. Ո՞ր էներգիան է կոչվում ճառագայթային:

    Արևից եկած էներգիան, որն մեզ տալիս է վիտամին D:

    1. Էլեկտրական էներգիայի ի՞նչ փոխակերպումներ են ձեզ հայտնի:

    Էլեկտրական էներգիան ստանում են թափվող ջրի շարժումից։

    1. Ի՞նչ գիտեք ատոմային <միջուկային>էներգիայի մասին:

    Միջուկային էներգիան ստանում են ատոմային գործարաների շնորհիվ որոնք շատ վտանգավոր են։ այն նաև օգտագործում են ատոմային պայթուցիկում։ այն ինչ լինու է նրանից հետո կոչվում է ճառագայթություն, որն կրկնեմ շատ վտանգավոր է։

    1. Ի՞նչ էներգիա է անհրաժեշտ կենդանի օրգանիզմներին:

    Ճառագայթային էներգիա, որն կրկնեմ ստանում էնք արևից։

    Рубрика: Բնագիտություն 6դ

    Էներգիայի տեսակներ և փոխակերպումներ:Էներգիան և կենդանի օրգանիզմները

    Բացի մեխանիկական էներգիայից գոյություն ունեն էներգիայի այլ բազմաթիվ տեսակներ՝ ջերմայինէլեկտրականքիմիական, միջուկային և այլն:

    1. Էներգիայի տեսակներ և փոխակերպումներ

    Բացի մեխանիկական էներգիայից գոյություն ունեն էներգիայի այլ բազմաթիվ տեսակներ՝ ջերմային, էլեկտրական, քիմիական, միջուկային և այլն:
    1. Ջերմային էներգիա
    Մարդիկ շատ վաղուց օգտագործում են վառելանյութերի այրումից առաջացող ջերմային էներգիան: Որպես վառելանյութ օգտագործում են քարածուխը, տորֆը, նավթը, բենզինը, մազութը, բնական գազը:

    2. Էլեկտրական էներգիա
    Ներկայումս մարդկության կողմից ամենաշատ օգտագործվող էներգիան էլեկտրական էներգիան է: Էներգիայի այլ տեսակների հետ համեմատած` էլեկտրական էներգիան ունի մի շարք առավելություններ. հեշտությամբ և քիչ կորուստներով տեղափոխվում է մեծ հեռավորություններ, ինչպես նաև էլեկտրական սարքերում կարող է փոխակերպվել էներգիայի այլ տեսակների:  

    Օրինակ՝ էլեկտրաշարժիչներում էլեկտրական էներգիան վերածվում է մեխանիկական էներգիայի, ջեռուցիչ սարքերում` ջերմային էներգիայի, լուսավորող սարքերում` լուսային էներգիայի: Էլեկտրական էներգիա ստանում են տարբեր տիպի էլեկտրակայաններում՝  հիդրոէլեկտրակայաններում, ջերմաէլեկտրակայաններում, հողմաէլեկտրակայաններում,  արևի մարտկոցներում:

    3. Միջուկային էներգիա Միջուկային էներգիան անջատվում է որոշ նյութերի (ուրան, պլուտոնիում) ատոմային միջուկների ճեղքման ընթացքում: Ատոմային էլեկտրակա-յաններում  այդ էներգիայի հաշվին էլեկտրաէներգիա է արտադրվում: Ատոմային էլեկտրակայան գործում է նաև Հայաստանում՝ Մեծամորի ատոմային էլեկտրակայանը:

    4. Քիմիական էներգիա

    Քիմիական էներգիան անջատվում է տարբեր նյութերի միջև տեղի ունեցող քիմիական ռեակցիաների հետևանքով, ցանկացած վառելիքի այրման ժամանակ: Քիմիական էներգիայով են աշխատում, օրինակ, էլեկտրական մարտկոցները:

    5. Ճառագայթային էներգիա

    Երկրի վրա կյանքը պայմանավորված է Արեգակից ստացվող ճառագայթային էներգիայով: Այդ էներգիան ծախսվում է երկրագնդի տաքացման համար, իր շնորհիվ է տեղի ունենում ջրի մեծ շրջապտույտը, առաջանում քամիները, օվկիանոսային հոսանքները: Արեգակնային էներգիան կլանվում է բույսերի կողմից, օգտագործվում ֆոտոսինթեզի համար:

    Էներգիան կարող է մի տեսակից փոխակերպվել մեկ այլ տեսակի: Հիդրոէլեկտրակայանում ջրի մեխանիկական էներգիան փոխակերպվում է էլեկտրական էներգիայի, որն իր հերթին կարող է փոխակերպվել ջերմային, լուսային էներգիաների: Էներգիան կարող է մի մարմնից հաղորդվել մյուսին: Երբ շարժվող գունդը բախվում է անշարժ գնդին և շարժում է այն, նրան հաղորդում է իր մեխանիկական էներգիայի մի մասը։ Տաք և սառը մարմինների հպման ժամանակ տաք մարմնի ներքին էներգիայի մի մասը հաղորդվում է սառը մարմնին և այլն։
    Բազմաթիվ փորձերի արդյունքներով հաստատվել է, որ էներգիան չի ստեղծվում և չի ոչնչանում, այլ` մի տեսակից փոխակերպվում է մեկ այլ տեսակի:Այս պնդումն անվանում են էներգիայի պահպանման և փոխակերպման օրենք:


    2.Էներգիան և կենդանի օրգանիզմները

    Էներգիան անհրաժեշտ է բոլոր կենդանի օրգանիզմներին։ Բոլոր կենդանի օրգանիզմներն իրենց անհրաժեշտ էներգիան հիմնականում ստանում են Արեգակից:Կանաչ բույսերում և որոշ միկրոօրգանիզմներում օրգանական նյութերն առաջանում են լուսասինթեզի ընթացքում, որի համար անհրաժեշտ են Արեգակի էներգիան, ածխաթթու գազ և ջուր: Օրգանական նյութերի առաջացման ժամանակ անջատվում է թթվածին, այսինքն լուսային էներգիան փոխակերպվում է քիմիական էներգիայի։

    Մարդը, կենդանիները և որոշ միկրոօրգանիզմներ անօրգանական նյութերից օրգանական նյութեր չեն ստեղծում։ Նրանք օրգանական նյութերն ընդունում են պատրաստի ձևով՝ սնվելով այլ կենդանիներով, բույսերով։Նրանց համար այդ օրգանական նյութերը էներգիայի աղբյուր են և այդ նյութերի քայքայման ժամանակ անջատվում է էներգիա։ Այս էներգիան կենդանի օրգանիզմներում ծախսվում է այլ նյութերի սինթեզման, օրգանիզմի կառուցման, աճի, շարժման և կենսագործունեության համար։

    Կենդանի օրգանիզմներում քիմիական էներգիայի մի մասը փոխակերպվում է էլեկտրական, լուսային, մեխանիկական և ներքին էներգիաների։Անջատված էներգիայի մյուս մասը ծառայում է օրգանիզմի տաքացմանը կամ արտահոսում է շրջակա միջավայր ջերմության ձևով: Հայտնի են որոշ բակտերիաներ կամ ցամաքային և ծովային կենդանիներ, որոնք էներգիան արձակում են լույսի ձևով:

    Կատվաձուկը, օձաձուկը և որոշ ձկներ պաշտպանվելու, կողմնորոշվելու նպատակով օգտվում են էլեկտրական պարպումներից:
    Այսպիսով, կանաչ բույսերը և բակտերիաների մի մասը ստեղծում են օրգանական նյութեր, իսկ մյուս կենդանի օրգանիզմները սնվում են այդ պատրաստի նյութերով:Տարբեր կենդանի օրգանիզմների միջև նման փոխազդեցությունները կոչվում են սննդային կապեր, որոնց իմացությամբ կազմվում են սննդային շղթաներ:Օրգանական նյութերի քայքայմանը մաս-նակցում է օդի թթվածինը: Թթվածնի սակավության դեպքում քայքայման ռեակցիաները դանդաղում են, ուստի պակասում է նաև էներգիան:

    Լրացուցիչ տնային աշխատանք

    Պատասխանել հարցերին

    1. Լրացրու բաց թողնված բառը

     Արեգակից ստացվող ջերմային էներգիայով:

    2․ Էներգիայի ի՞նչ տեսակներ են ձեզ հայտնի:

    Էլեկտրական,ջերմային, քիմիական։ 

    3․ Ի՞նչպես են կենդանիերը և բույսերը ստանում օրգանական նյութեր:

    Օրգանական նյութեր արևի միջոցով: